Outline

3. Intensity Transformations and Spatial Filtering

► Some Basic Intensity Transformation Functions
► Histogram Processing
► Fundamentals of Spatial Filtering
► Smoothing Spatial Filters
► Sharpening Spatial Filters
► Combining Spatial Enhancement Methods
► Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering
Importance of Neighborhood

► Both zebras and dalmatians have black and white pixels in similar numbers.
► The difference between the two is the characteristic appearance of small group of pixels rather than individual pixel values.
Spatial Filtering

A spatial filter consists of (a) a **neighborhood**, and (b) a **predefined operation**

Linear spatial filtering of an image of size MxN with a filter of size mxn is given by the expression

\[
g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)
\]
FIGURE 3.28 The mechanics of linear spatial filtering using a 3×3 filter mask. The form chosen to denote the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.
Spatial Filtering (Moving Average In 2D)
Spatial Filtering (Moving Average In 2D)

\[F[x, y] \quad G[x, y] \]
Spatial Filtering (Moving Average In 2D)

\[F[x, y] \quad G[x, y] \]
Spatial Filtering (Moving Average In 2D)

\[F[x, y] \quad G[x, y] \]
Spatial Filtering (Moving Average In 2D)

\[F[x, y] \quad G[x, y] \]
Spatial Filtering (Moving Average In 2D)

$F[x, y]$

$G[x, y]$
Smoothing Spatial Filters

- Smoothing filters are used for blurring and for noise reduction.

- Blurring is used in removal of small details and bridging of small gaps in lines or curves.

- Smoothing spatial filters include linear filters and nonlinear filters.
Two Smoothing Averaging Filter Masks

![Filter Masks](image)

Python Code:

```python
kernel1 = np.ones((3, 3))
img = cv2.filter2D(src=image, ddepth=-1, kernel=kernel1)
```

Figure 3.32 Two 3×3 smoothing (averaging) filter masks. The constant multiplier in front of each mask is equal to 1 divided by the sum of the values of its coefficients, as is required to compute an average.
Two Smoothing Averaging Filter Masks

[2,2] = (3*1) + (4*-1) + (7*1) + (8*1) + (6*-4) + (3*1) + (4*-1) + (1*1) + (2*-1)

Identity kernel

Edge detection

Sharpen kernel

Box blur

Gaussian blur kernel
Blur an image with a 2D convolution matrix

```python
# importing the modules needed
import cv2
import numpy as np

# Reading the image
image = cv2.imread('image.png')

# Creating the kernel(2d convolution matrix)
kernel1 = np.ones((5, 5), np.float32)/30

# Applying the filter2D() function
img = cv2.filter2D(src=image, ddepth=-1, kernel=kernel1)

# Showing the original and output image
cv2.imshow('Original', image)
cv2.imshow('Kernel Blur', img)

cv2.waitKey()
cv2.destroyAllWindows()
```
Smoothing (Averaging) Filter Masks

Ortalama filtresini gerçekleştirmek için `cv2.blur()` ve `cv2.boxFilter()` işlevleri kullanılabilir.

Her iki işlev de çekirdeği kullanarak bir görüntüyü düzgünleştirir.

Syntax of cv2.blur()

```python
cv2.blur(image, ksize)
```

Syntax of cv2.boxFilter()

```python
cv2.boxFilter(src, dst, depth, ksize, anchor, normalize, bordertype)
```
Smoothing (Averaging) Filter Masks

Example of Averaging Filter

```python
import cv2
import numpy as np

# image path
path = 'salad.jpg'

# using imread()
img = cv2.imread(path)

im1 = cv2.blur(img,(5,5))
im2 = cv2.boxFilter(img,-1,(2,2),normalize=True)

cv2.imshow('image', np.hstack((im1, im2)))
cv2.waitKey(0);
cv2.destroyAllWindows();
cv2.waitKey(1)
```
The general implementation for filtering an $M \times N$ image with a weighted averaging filter of size $m \times n$ is given

$$g(x, y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x + s, y + t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}$$

where $m = 2a + 1$, $n = 2b + 1$.
Spatial Smoothing Linear Filters

FIGURE 3.33 (a) Original image, of size 500×500 pixels. (b)–(f) Results of smoothing with square averaging filter masks of sizes $m = 3, 5, 9, 15, 25, 35, 45,$ and 55, respectively. The black squares at the top are of sizes $3, 5, 9, 15, 25, 35, 45,$ and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25 pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% black in increments of 20%. The background of the image is 10% black. The noisy rectangles are of size 50×120 pixels.
Example: Gross Representation of Objects

FIGURE 3.34 (a) Image of size 528×485 pixels from the Hubble Space Telescope. (b) Image filtered with a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)
Order-statistic (Nonlinear) Filters

— Nonlinear

— Based on ordering (ranking) the pixels contained in the filter mask

— Replacing the value of the center pixel with the value determined by the ranking result

E.g., median filter, max filter, min filter
Order-statistic (Nonlinear) Filters

```python
import cv2
import numpy as np

img = cv2.imread('brain.jpg')
median = cv2.medianBlur(img, 5)
compare = np.concatenate((img, median), axis=1) # side by side comparison

cv2.imshow('img', compare)
cv2.waitKey(0)
cv2.destroyAllWindows
```
Example: Use of Median Filtering for Noise Reduction

Python Code (median):
```
medianBlur(source_image, kernel_size)
```
Sharpening Spatial Filters

- The aim is to emphasize the transitions in intensity.

- Laplacian Operator

- Unsharp Masking and Highboost Filtering

- Using First-Order Derivatives for Nonlinear Image Sharpening — The Gradient
The first-order derivative of a one-dimensional function \(f(x) \) is the difference

\[
\frac{\partial f}{\partial x} = f(x + 1) - f(x)
\]

The second-order derivative of \(f(x) \) as the difference

\[
\frac{\partial^2 f}{\partial x^2} = f(x + 1) + f(x - 1) - 2f(x)
\]
FIGURE 3.36
Illustration of the first and second derivatives of a 1-D digital function representing a section of a horizontal intensity profile from an image. In (a) and (c) data points are joined by dashed lines as a visualization aid.
The second-order isotropic derivative operator is the Laplacian for a function (image) $f(x,y)$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$
Sharpening Spatial Filters: Laplace Operator

(a) Filter mask used to implement Eq. (3.6-6).
(b) Mask used to implement an extension of this equation that includes the diagonal terms.
(c) and (d) Two other implementations of the Laplacian found frequently in practice.
Image sharpening in the way of using the Laplacian:

\[g(x, y) = f(x, y) + c \left[\nabla^2 f(x, y) \right] \]

where,
\[f(x, y) \] is input image,
\[g(x, y) \] is sharpened images,
\[c = -1 \] if \(\nabla^2 f(x, y) \) corresponding to Fig. 3.37(a) or (b)
and \(c = 1 \) if either of the other two filters is used.
Sharpening Spatial Filters: Laplace Operator

Python Code:

```python
Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT );
```

- `src_gray`: The input image.
- `dst`: Destination (output) image
- `ddepth`: Depth of the destination image. Since our input is `CV_8U` we define `ddepth = CV_16S` to avoid overflow
- `kernel_size`: The kernel size of the Sobel operator to be applied internally. We use 3 in this example.
- `scale`, `delta` and `BORDER_DEFAULT`: We leave them as default values.
Sharpening Spatial Filters: Laplace Operator

```python
# File laplace_demo.py
# Brief Sample code showing how to detect edges using the Laplace operator

import sys
import cv2 as cv

def main(args):
    # [variables]
    # Declare the variables we are going to use
    ddepth = cv.CV_16S
    kernel_size = 3
    window_name = "Laplace Demo"
    # [variables]

    # [load]
    imageName = argv[0] if len(argv) > 0 else "lena.jpg"

    src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR) # Load an image

    # Check if image is loaded fine
    if src is None:
        print ('Error opening image')
        print ('[image_name -- default lena.jpg']
        return -1

    # [load]

    # [reduce_noise]
    # Remove noise by blurring with a Gaussian filter
    src = cv.GaussianBlur(src, (3, 3), 0)

    # [reduce_noise]

    # [convert_to_gray]
    # Convert the image to grayscale
    src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)

    # [convert_to_gray]

    # Create Window
    cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)

    # [laplacian]
    # Apply Laplace function
    dst = cv.Laplacian(src_gray, ddepth, ksize=kernel_size)

    # [laplacian]

    # [convert]
    # converting back to uint8
    abs_dst = cv.convertScaleAbs(dst)

    # [convert]

    # [display]
    cv.imshow(window_name, abs_dst)
    cv.waitKey(0)
    # [display]

    return 0

if __name__ == "__main__":
    main(sys.argv[1:])
```
FIGURE 3.38
(a) Blurred image of the North Pole of the moon.
(b) Laplacian without scaling.
(c) Laplacian with scaling. (d) Image sharpened using the mask in Fig. 3.37(a). (e) Result of using the mask in Fig. 3.37(b). (Original image courtesy of NASA.)
For function $f(x, y)$, the gradient of f at coordinates (x, y) is defined as

$$\nabla f \equiv \text{grad}(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

The magnitude of vector ∇f, denoted as $M(x, y)$

$$M(x, y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

Gradient Image
Image Sharpening based on First-Order Derivatives

The *magnitude* of vector ∇f, denoted as $M(x, y)$

$$M(x, y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$M(x, y) \approx |g_x| + |g_y|$$

<table>
<thead>
<tr>
<th>z_1</th>
<th>z_2</th>
<th>z_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_4</td>
<td>z_5</td>
<td>z_6</td>
</tr>
<tr>
<td>z_7</td>
<td>z_8</td>
<td>z_9</td>
</tr>
</tbody>
</table>

$$M(x, y) = |z_8 - z_5| + |z_6 - z_5|$$
Image Sharpening based on First-Order Derivatives

Figure 3.41
A 3×3 region of an image (the zs are intensity values).

(b)–(c) Roberts cross gradient operators.
(d)–(e) Sobel operators. All the mask coefficients sum to zero, as expected of a derivative operator.
Image Sharpening based on First-Order Derivatives

Roberts Cross-gradient Operators

\[M(x, y) \approx |z_9 - z_5| + |z_8 - z_6| \]

Sobel Operators

\[M(x, y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| \]
\[+ |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)| \]
Example

FIGURE 3.42
(a) Optical image of contact lens (note defects on the boundary at 4 and 5 o’clock).
(b) Sobel gradient.
(Original image courtesy of Pete Sites, Percepts Corporation.)
Example:

Combining Spatial Enhancement Methods

Goal:

Enhance the image by sharpening it and by bringing out more of the skeletal detail.

FIGURE 3.43
(a) Image of whole body bone scan.
(b) Laplacian of (a).
(c) Sharpened image obtained by adding (a) and (b).
(d) Sobel gradient of (a).
Example:

Combining Spatial Enhancement Methods

Goal:

Enhance the image by sharpening it and by bringing out more of the skeletal detail

FIGURE 3.43 (Continued)
(e) Sobel image smoothed with a 5×5 averaging filter. (f) Mask image formed by the product of (c) and (e). (g) Sharpened image obtained by the sum of (a) and (f). (h) Final result obtained by applying a power-law transformation to (g). Compare (g) and (h) with (a). (Original image courtesy of G.E. Medical Systems.)
References

- Lecture Notes, BIL717-Image Processing, Erkut Erdem
- Lecture Notes, EBM537-Image Processing, F.Karabiber https://docs.opencv.org/
- https://www.geeksforgeeks.org/python-opencv-filter2d-function/
- https://medium.com/@florestony5454/median-filtering-with-python-and-opencv-2bce390be0d1
- Bekir Aksoy, Python ile İmgeden Veriye Görüntü İşleme ve Uygulamaları, Nobel Akademik Yayınıncılık