
CPE101 Programming Languages I

Assoc. Prof. Dr. Caner ÖZCAN

Week 8
Variable Types in C Language and

Basic Input/Output Operations

2

Basic Data Types in C Language

►Variables and data types to be used in C language
must be declared in the program beforehand.

►Digital Data Types

a) Integer Data Types

b) Fractional Data Types

– int – integers

– float – float numbers

– double – longer and very sensitive float numbers

– char - characters

3

int toplam; /* signed integer */

toplam = 100; /* can be positive */

toplam = -20; /* can be negative */

int toplam = 32000; /* initialization can */

 /* be made when definition */

Integers

►Represent integers
– Both negative and positive integers

►Expression of integer type in C :
int

►Example:

4

4 byte

int
from -2.147.483.648 to
2.147.483.647 (total number
4.294.967.296)

4 byte

unsigned
int

from 0 to 4,294,967,295
(total number 4,294,967,296)

Integers

►Integer qualifiers: long, short, or unsigned

►Integer sizes vary according to the qualifiers.

►The default integer size depends on the machine
operating system.

5

float f;

f = 0.12; /* can be positive */

f = -245.56; /* can be negative */

float f = 4.567; /* initialization can */

 /* be made when definition */

Fractional Numbers- float

►It refers to the actual number (with comma
section)
– Can be negative and positive

►Expression of float type in C :
float

►Example:

6

double d;

d = 3.12E+5; /* 312000.0 */

d = -45.678; /* negative */

double d = 4.567; /* initialization */

Longer Fractional Numbers - double

►Standard "double precision floating point" (real)
numbers.
– such as float, but is much larger and precision.

►Expression of double type in C :
double

►Example:

7

char c;

c = 'A'; /* Letter A */

c = ‘9’; /* Number 9 */

char c = ‘c’; /* initialization */

Character - char

► It refers to a single character
– Characters

• Uppercase and lowercase letters of the alphabet
• 10 numbers from 0 to 9
• Special symbols such as +#@½%&$.*?!£‘=-:/*^(){}[]~;,<>

► Characters used between quotation marks
– for example 'A'

► Expression of char type in C :
char

8

char

►Actually, the characters represent a natural
number with 1 byte
– char variable takes place 1 byte in memory

►Characters (char variables) values in ASCII table…
– ‘A’ ASCII value is 65
– ‘B’ ASCII value is 66

– ‘0’ ASCII value is 48
– ‘1’ ASCII value is 49

– http://www.asciitable.com/

9

ASCII Tablosu

10

char c;

c = ''';

char c;

c = '\'';

✓

Special Characters

►Characters are shown in single quotes
– How we will show quotation marks?

►If backslash(\) is used before a character, this case
is called as Escape Sequence.
– It destroys the meaning of the character after coming from it.

11

Escape Sequence

►It consists of backslash (\) and one character. The
compiler gives the sign to be perceived as normal
the next character.

►Favorites
– \n go to the next line

– \t move to the next tab

– \r takes per line

– \\ backslash character

– \' single quotes

– \" double quotes

12

Summary

►Integers (signed and unsigned)
– char – 1 byte

• Also used to store ASCII characters..

– short – 2 byte
– int – 4 byte
– long – 4 veya 8 byte

►Real numbers (just signed)
– float – 4 byte
– double – 8 byte

13

Data Type Size Range

char 1 byte -128 : 127

unsigned char 1 byte 0 : 255

short 2 byte -32768 : 32767

unsigned short 2 byte 0 : 65535

int 4 byte
-2147483648 :
2147483647

unsigned int 4 byte 0 : 4294967295

float (7 precision) 4 byte
1.175494e-38 :
3.402823e+38

double (16 precision) 8 byte
2.225074e-308 :
1.797693e+308

Data Types and Features

14

Basic Writing Characteristics of C Language

► Program writing is in the form of certain patterns and
blocks.

► The blocks are created by brackets {}.

► Commands can be written to the same or lower bottom
line. maximum of 1023 characters can be written on one
line.

►All commands ends with semicolon (;).

► Semicolons is not used after the phrase started block.

►All variables used in the program and data types are
defined.

► The libraries containing the commands to be used in the
program must be activated / called.

15

Structure of C Language

► Program title: The section contains the description about
the program.

 /* description or program title */

►Definition and Declaration Part: This section includes
preprocessor commands, variables and structure
identification, notification, such as a fixed value
assignment.

a) include: used to call the library.

#include < library name >
stdio.h: standart input/output

conio.h: dos supported input/output

math.h: mathematical functions

stdlib.h: transform, sort, search, and so on.

16

Structure of C Language

►Definition and Declaration Part:

b) define: Command that allows the transfer some
expressions or constants to the symbolic name.

 #define symbolic_name equivalent_expression

c) Variable definition: All variables in C are reported as the
name and data type..

 data_type variable_name;

 data_type variable_name = value;

d) Constant Definition or Initialization: "const" is used to
define constants in C programs.

 const constant_name = value;

17

Structure of C Language

Header Part

Definition
and

Declaration
Part

Sub
Programs

Part

Main
Program

Part

18

Structure of C Language

19

C Reserved Words

20

Recommendations for Writing Code

► Program descriptions and document preparation should be
made while programming. This is very important point that
should be noted.

► Variables, constants and function names must be long enough
to be selected from the meaningful words.

► If the names contains a few words, words should be separated
using underscore (_) or each word should start capitalized. For
example:
– int last_taken_bit;

– void InterruptNumber();

– float Mean Value = 12.7786;
► All letters of constant should be written in capital letters. For

example:
– #define PI = 3.14;

– int STATUS 0x0379;

21

Recommendations for Writing Code

►Use the TAB key to entering any sub-program part. This
will increase readability. For example:

for(i=0; i<10; i++)

{

 for(j=0; j<i; j+=2)

 {

 do{

 k = i + j;

 }while(k!=0);

 }

}

22

Recommendations for Writing Code

►Use the space character before and after the
arithmetic operators and assignment operators.
This will provide a better understanding of written
mathematical expression .

►For example:

Hmax = pow(Vo, 2) / (2 * g);

Tf = 2 * Vo / g;

Vy = Vo – g * t;

y = Vo * t - (g * t * t)/ 2.0;

z = (a * cos(x) + b * sin(x)) * acos(y);

23

Recommendations for Writing Code

►After the program is over, review your program
over and over and look for ways to better write
your program.

►Try to obtain the same functions with shorter
algorithms and more modularity.

►Make the necessary studies in order to understand
your program.

►Transfer your knowledge and work to others in the
best way.

►I/O functions are defined in standard input/output
C library
▪ stdio.h

►You need to add "stdio.h" to the beginning of the
program
▪ You need to do add this with the preprocessor

command #include.

►Preprocessor commands begin with #.
▪ #define

24

#include <stdio.h>

Input/Output Library

25

Input/Output Functions

►The I/O functions are defined in the standard
input/output C library.
▪ stdio.h

►Keyboard Input
▪ scanf -- General formatted input

▪ getchar -- reads a single character

►Monitor (Screen) Output
▪ printf -- General formatted output

▪ putchar -- writes a single character

►It allows data transfer to the variables entered
from the keyboard.

►The "expression format" refers to the format of
data; "variable list" specifies variables to which
data is to be transferred.

26

scanf("expression format", &variable list);

scanf Function

27

int number;

printf(“Enter one integer: “);

scanf(“%d”, &number);

Format part Variable address

scanf Function

28

int n;

double d;

char c;

printf(“Enter 3 values;\n“);

printf(“one int, one double, and one char: “);

scanf(“%d”, &n);

scanf(“%lf”, &d);

scanf(“%c”, &c);

scanf Examples

►“%c” char

►“%d” int

►“%f” float

►“%lf” double

►Function that writes data to the screen by formatting.

►"expression format" generally consists of three parts.

– Description part

– Format part

– Control/exit part

29

printf(" expression format ", variables);

printf Function

30

int number = 7;

printf(“%d double = %d \n”, number, 2*number);

Format part Statement part

printf Function

31

printf Function

a) Description: It is written directly to the screen in double quotes.

 printf("Ankara");

b) Format: Starting with the% symbol and is part of the specified
output format.

 printf("Result: %d ", x);

.precision Specifies the maximum number of characters to be
displayed in.

 printf(«Result: %.2lf ", y);

32

Character Type Output Format

c char Single-byte character

hd short Signed decimal short int (2 byte int)

d int Signed decimal integer

ld long Signed decimal long integer

u int Unsigned decimal integer

x int Hexadecimal integer (base 16)

f float Signed decimal numbers

lf double Signed decimal numbers but much more sensitive

e float double Signed real numbers (scientific formatting)

printf Type Setting Characters

33

printf Function

c) Control: begins with the "\" character and meaning of these signs
are as follows:

Character Mean
 \a Produce sound (alert)
 \b Move the cursor to the left (backspace)
 \f Page jump. Move beginning of the next page (formfeed)
 \n Move new line (newline)
 \r Made carriage (carriage return)
 \t Horizontal TAB
 \v Vertical TAB
 \" Write a double-quote character to the screen
 \' Write a single-quote character to the screen
 \\ Write "\" character to the screen
 %% Write " % " character to the screen

34

double fp = 251.7366;

int i = 25;

printf("Real number: %.2lf \n", fp);

printf(“Right-handed integer: %10d \n”, i);

Real number: 251.74

Right-handed integer : 25

Output:

printf Examples

35

printf("%.5f\n", 300.0123456789);

printf("%.14lf\n", 300.01234567890123456789);

300.01235

300.01234567890123

printf Examples

36

printf("%e ve %e\n",

 300.00145678901, 0.0024);

3.000015e+002 ve 2.400000e-003

scientific view for float and double.
Note: 7 digit precision for the float.

printf Examples

• getchar takes a single character from the keyboard.

• putchar writes a single character to the screen.

• Example:

37

char c;

printf(“Menu \n");

printf(" (a) Write C program\n");

printf(" (b) Go swimming \n");

printf(" (c) Watch TV\n");

printf(“Choose one option: ");

c = getchar(); /* Take user selection */

getchar(); /* new line '\n‘*/

 /* put this character */

putchar('B'); /* Write B to the screen */

c = 'Z';

putchar(c); /* Write Z to the screen */

getchar ve putchar Functions

38

References

►Doç. Dr. Fahri Vatansever, “Algoritma Geliştirme ve
Programlamaya Giriş”, Seçkin Yayıncılık, 12. Baskı,
2015.

►J. G. Brookshear, “Computer Science: An Overview
10th Ed.”, Addison Wisley, 2009.

►Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”, Pusula
Yayıncılık, 2002.

►Paul J. Deitel, “C How to Program”, Harvey Deitel.

►Bayram AKGÜL, C Programlama Ders notları

	Varsayılan Bölüm
	Slayt 1: CPE101 Programming Languages I
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33
	Slayt 34
	Slayt 35
	Slayt 36
	Slayt 37
	Slayt 38

