
CPE101 Programming Languages I

Assist. Prof. Dr. Caner ÖZCAN

Week 2
Variable Concept and Basic Operators

2

Object

►Any accessible thing which takes a memory space
is called an object.

►An expression should indicate a memory space to
be called as an object.

▪ a = b+c;

▪ d = 100;

►In the above expressions, a, b, c and d are all an
object.

3

Object

►Properties of Objects: name, value, type, scope,
lifetime.

►Name: Characters that represent an object.

►Value: Information stored in an object. It can be
changed at any time.

►Type: A property that specifies how a compiler
behaves to an object on a process.

– Most of the programming languages includes object
types such as char, integer and float.

►Assigns a value to an object. It is showed by an
equal sign " = " in C.

►Usage of assignment operator:

object = expression;

►Examples:

4

a = 23;

b = a * 10;

total = total + b;

Assignment Operator

5

Left Values (lvalue)

►All expressions that specify object are left values.

►An expression is called as left value if it shows a
location in the memory.

►For example, in previous example expression, a
and b are the left values.

►But, a+b is not a left value. It only represents a
number which indicates the sum of a and b.

►For example we can not write, a+b = c

►Expressions that do not specify objects. They take
place on the right side of assignment operator.

►Constants are always right value.

►For example, in an expression a = 100; a indicates
a left value and 100 indicates right value.

►An expression like 100 = a; is wrong.

►Following expressions have mistakes.

6

20 = ...; /* mistake */

c – 4 = ...; /* mistake */

(y) = ...; /* mistake */

m * 2 = ...; /* mistake */

Right Value (rvalue)

7

Object Type

►All information that points a memory space or not,
is called data.

►Both constants and objects are all data.

►The way that compiler interprets an information
stored inside an object depends on the type of
that object.

►At the same time, an object type gives information
about the amount of memory space that is
consumed by the object.

8

Object Type

►Objects are stored at a location inside the memory.
►For example, objects "a" and "b" are put in a free

location in the memory.
►Memory space they consume depends on their types

and can be different.
►"a" and "b" are only labels that indicate the starting

point of a location in the memory.
►An assignment like a = 100 changes the value in the

memory location indicated by related object.
►For example, we have two objects assigned with

values a= 100 and b = 50
►An expression like a = b + 80 only changes the value of

a but b is preserved.

9

Object Type

10

Expression

►An expression is a mathematical formula used for
calculation and end with a semicolon ";"
– (a+b)/4;

– a*b+c;

►Expressions are formed by Operators

►C operators can be classified as shown below:
– Assignment Operator (=)

– Arithmetic Operators (+, -, *, /, %)

– Arithmetic Assignment Operators (+=, -=, *=, …)

– Increment and Decrement Operators (++, --)

– Relational Operators (<, <=, ==, >=, >)

– Logical Operators (&&, ||, !)

11

Arithmetic Operators

►The arithmetic operators are all binary operators.

–For example the expression 3+7 contains the binary
operator + and the operands 3 and 7.

►The asterisk (*) indicates multiplication and the
percent sign (%) denotes the remainder operator.

►Integer division yields an integer result.

–For example the expression 7/4 yields 1.

12

Arithmetic Operators

►C provides remainder operator %, which yields the
remainder after integer division.

►The remainder operator is an integer operator that
can only be used with integer operands.

►The expression x % y yields the remainder after x is
divided by y. Thus 7%4 yields 3.

13

Operation
Arithmetic
Operator

Addition +

Subtraction -

Multiplication *

Division /

Remainder %

Arithmetic Operators

14

ORDER OPERATOR OPERATION

1 () Paranthesis

2 *
/
%

Mutiplication
Division
Remainder

3 +
-

Addition
Subtraction

Precedence Rules on Arithmetic Operators

15

Precedence Rules on Arithmetic Operators

►Expressions within pairs of parentheses are evaluated
first.

► Parentheses are said to be highest level of precedence.

► In cases of nested or embedded parentheses such as
– ((a+b)+c) (the operators in the innermost pair of parentheses are applied

first)

► Paranthesis in the same level are evaluated from left to
right.

► Multiplication, division and remainder comes after
parenthesis.

► Addition and subtraction has the same level of precedence,
which is lower than the precedence of multiplication,
division and remainder operations.

16

Precedence Rules on Arithmetic Operators

► Multiplication, division and remainder are said to be on the
same level of precedence.

► If an expression contains several multiplication, division and
remainder operations, evaluation proceeds from left to
right.

► If an expression contains several addition and subtraction
operations, evaluation proceeds from left to right.

► Remembering rules of precedence can be complex.
► You would better try to use parenthesis in order to

specify precedence of operators in expressions.
• For example: result = (a*b) + (a/b);

► If we want to divide the entire quantity (a+b+c+d+e) by 5.
m= (a + b + c + d + e) / 5;

► Here, parentheses are required to group the additions because division
has higher precedence than addition.

► If the parentheses are omitted we obtain a+b+c+d+e/5. And it would first
calculate e/5 then additions.

z = p * r % q + w / x – y;

• y = a * x * x + b * x + c;
a = 2, b = 3, c = 7 and x = 5
y = 2 * 5 * 5 + 3 * 5 + 7
y = 10 * 5 + 3 * 5 + 7
y = 50 + 3 * 5 + 7
y = 50 + 15 + 7
y = 65 + 7
y = 72

17

6 1 2 4 3 5

Precedence Rules on Arithmetic Operators

18

Arithmetic Assignment Operators

►Arithmetic assignment operators are:
+= -= *= /= %= …

►result = ++a; → first increment the value of a,
then assign it to result (preincrement)

►Same with :

►result = --a; → first decrement the value
of a, then assign it to the result
(predecrement)

• Same with:

19

a = a+1;

result = a;

a = a-1;

result = a;

Unary Increment and Decrement Operators

► result = a++; → First assign the value of a to result, then increment
the value of a (postincerement)

► Same with:

► result = a--; → First assign the value of a to result, then
decrement the value of a (postdecrement)

► Same with:

► It’s important to note here that when incrementing or
decrementing a variable in a statement by itself, the preincrement
and postincrement forms have the same effect. Same with:

20

result = a;

a = a+1;

result = a;

a = a-1;

Unary Increment and Decrement Operators

21

Relational Operator

== X == Y X is equal to Y

!= X != Y X is not equal to Y

> X > Y X is greater than Y

< X < Y X is less than Y

>= X >= Y X is greater than or equal to Y

<= X <= Y X is less than or equal to Y

Relational Operators

►Expressions that compare two values and produce
either True (1) or False (0) are formed by relational
operators.

22

1Trueb == 2

0Falsec != 3

0False(b + c) > (a + 5)

1True(a + b) >= c

1Truea < b

Value Result Expression

Relational Operators

► C does not have an explicit boolean type
– So integers are used instead. The general rules is:
– “Zero is false, any non-zero value is true”

►Assume that, a = 1, b = 2, and c = 3

23

Relational Operators

►Used to combine relational expressions that are
either True (1) or False (0)

►Their result is again "True" or "False«

►If a number is interpreted in logical way, the rule
is:
– 0 → False

– No zero positive or negative numbers are True.

• For example:
– -11 → True

– 0 → False

– 99 → True

►Unary NOT operator converts True to False and
False to True.

►For example: a = !6 → 0

24

X ! X

True False

False True

Relational Operators (! → NOT)

25

X Y X && Y

False False False

False True False

True False False

True True True

Relational Operators (&& → AND)

►Returns True if both conditions are True.

26

Relational Operators (&& → AND)

►First, left side of AND operator is evaluated. If left
side of AND operator is false, evaluation stops.

►For example:

– a = 4 && 0 → a = 0

– b = 10 && -4 → b = 1

27

X Y X || Y

False False False

False True True

True False True

True True True

Relational Operators (|| → OR)

►Returns True if either of it's conditions are true.

28

Relational Operators (|| → OR)

►First, left side of OR operator is evaluated. If left
side of OR operator is true, evaluation stops.

►For example:

– a = 3 || 0 → a = 1

– b = 0 || -30 → b = 1

29

Relational Operators

►The && operator has a higher precedence than ||.

►An expression containing && or || operators is
evaluated only until truth or falsehood is known.

►This performance feature for the evaluation of
logical AND and logical OR expressions is called
short-circuit evaluation

HIGH PRECEDENCE

() Left to right Paranthesis

! ++ -- Right to left Arithmetic op.

* / % Left to right

+ - Left to right

> >= < <= Left to right Relational op.

== != Left to right

&& Left to right Logical op.

|| Left to right

= Right to left LOW PRECEDENCE Asignment op.

30

Notice that using parenthesis is the best way
for not having mistake.

Precedence of Operators

• Example1:
– a= 15;
– x = a >= 10 && a <= 20;
– Here, x = 1

• Example2:
– a= 20;
– b= 10;
– y = a + b >= 20 || a – b <=

10;
– Here, y = 1

31

• Example3:
• a= 5;
• b= 0;
• y = a || b && a

&& b
• Here, y = 1

Example Operations in Operators

32

• Doç. Dr. Fahri Vatansever, “Algoritma
Geliştirme ve Programlamaya Giriş”, Seçkin
Yayıncılık, 12. Baskı, 2015

• J. G. Brookshear, “Computer Science: An
Overview 10th Ed.”, Addison Wisley, 2009

• Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”,
Pusula Yayıncılık, 2002

• Paul J. Deitel, “C How to Program”, Harvey
Deitel.

33

References

