
CPE101 Programming Languages I

Assoc. Prof. Dr. Caner ÖZCAN

Week 13
Functions

2

Functions

► Functions

– Modules in C

– Programs combine user-defined functions with library
functions

– C standard library has a wide variety of functions

Benefits of Functions

• Benefits of Functions
– Divide and conquer

• Construct a program from smaller pieces or components
• These smaller pieces are called modules.
• Functions allow you to modularize a program.
• Experience has shown that the best way to develop and

maintain a large program is to construct it from smaller
pieces or modules, each of them is more manageable than
the original program.

– Software reusability
• Use existing functions as building blocks for new programs
• Abstraction - hide internal details (library functions)

– Avoid code repetition

3

Functions

• The variables defined in a function are the local
variables of this function.
– Only known in the body of the function

• Parameters
– Most functions have a list of parameters that provide the

means for communicating information between functions

– Also local variables of the function

• Function calls
– Provide function name and arguments (data)

– Function performs operations or manipulations

– Function returns results

4

Functions

● Function call
analogy:

● Boss asks worker
to complete task

● Worker gets
information, does
task, returns result

● Information
hiding: boss does
not know details

5

Defining Functions

• Format of a function definition :

return_value_type function_name (parameter_list)
{
 definitions_and_statements

}

• function_name is any valid identifier.

• return_value_type is the data type of the result returned
to the caller

• return_value_type void indicates that a function does not
return a value.

• Together, the return_value_type, function_name and
parameter_list are referred to as the function header.

6

Defining Functions

• parameter_list is a comma-separated list that
specifies the parameters received by the
function when it’s called.

• If a function does not receive any values,
parameter-list is void.

• A type must be listed explicitly for each
parameter

7

Defining Functions

• The definitions_and_statements within fancy
parentheses form the function body.

• The function body is also referred to as a
block.

• Variables can be declared in any block, and
blocks can be nested.

• A function cannot be defined inside another
function.

8

Defining Functions

• There are three ways to return control from a
called function to the point at which a function
was invoked.

• If the function does not return a result
– Control is returned simply when the function-ending

right fancy bracket is reached.

– or by executing the statement return;

• If the function does return a result, the statement
return expression;
returns the value of expression to the caller.

9

Function Prototype

• Identity of a function.

• Prototype only needed if function definition
comes after use in program.

• The function that has a prototype given
below:

– int maximum(int x, int y, int z);

– Takes 3 integer parameters.

– Returns integer value.

10

Function Prototype

• If a function call does not match the function prototype
compilation error is produced.

• An error is also generated if the function prototype and the
function definition disagree.

• Another important feature of function prototypes is the coercion
of arguments, i.e., the forcing of arguments to the appropriate
type.

• For example, the math library function sqrt can be called with an
integer argument even though the function prototype in
<math.h> specifies a double argument, and the function will still
work correctly.
– The statement ;
– printf("%.3f\n", sqrt(4));
– correctly evaluates sqrt(4), and prints the value 2.000

11

Defining Functions

12

Defining Functions

13

Header Files

• Each standard library has a corresponding header
containing the function prototypes and definitions of
various data types.

• <stdlib.h> , <math.h> , etc
• Load with #include <file name>

– #include <math.h>

• Custom header files
– Create file with functions.
– Save as filename.h
– Load in other files with #include "filename.h"
– Reuse functions.

14

Header Files

• math.h → Mathematics library functions

• ctype.h → Functions for testing characters for certain
properties, functions to convert into uppercase or
lowercase etc.

• stdio.h →Standard input/output functions

• stdlib.h →Functions for converting numbers to text or
text to number, memory management, random
number generation and other utility functions.

• string.h → String processing functions

• time.h → Time and date functions

15

Mathematic Library Functions

• Mathematic Library Functions
– Perform common mathematical calculations.

– #include <math.h>

• Format for calling functions
– Function_name(arguments);

• If multiple arguments, use comma-separated list

• All math functions return data type double

• Arguments may be constants, variables, or
expressions

16

Mathematic Library Functions

17

Mathematic Library Functions

18

Example: Square function

19

Example: Arithmetic functions

20

Example: Exponent function

21

Passing Arrays to Functions

• To pass an array argument to a function, specify
the name of the array without any brackets.

– int myArray [24];

– myFunction (myArray, 24);

• Unlike char arrays, other array types do not have
a special terminator.

• Therefore, the size of the array is usually passed
to the functions so functions can process proper
number of elements

22

Passing Arrays to Functions

• Arrays passed call-by-reference

• Name of array is the address of the first element

• Function knows where the array is stored in memory.
– Modifies original memory location.

• Passing an element to a function is call-by-value
– Pass subscripted name to function

– myArray [3]

• Function prototype that takes int array and int value
and returns nothing;
– void myArray (int [], int)

23

Passing Arrays to Functions

24

Passing Arrays to Functions

25

Passing Arrays to Functions

26

Passing Arrays to Functions

27

Passing Multiple Dimensional Arrays to
Functions

• Not different from passing single subscripted
arrays to functions.

• Just indicate rectangle brackets for each
dimension and specify the sizes for all dimensions
other than first dimension.

– void writeMatrice (int [] [4], int rowNumber);

– This definition will work for all matrices (with different
row numbers) having 4 colums.

– void writeMatrice (int [] [3] [4], int rowNumber);

28

Passing Multiple Dimensional Arrays to
Functions

29

Passing Multiple Dimensional Arrays to
Functions

30

Storage Classes

• Automatic Storage

– Object created and destroyed within its block

– auto: default for local variables

• auto double x, y;

– register: tries to put variable into high speed
registers

• register int counter= 1;

31

Storage Classes

• Static Storage

– Variable exists for entire program execution

– Default value of zero.

– static: local variables defined in functions.

• Keep value after function ends

• Only known in their own function

32

Storage Classes

• File Storage

– An identifier declared outside of a function has
file scope.

– Such an identifier is known in all functions from
the point at which identifier is declared until the
end of file

– Global variables, function definitions placed
outside a function all have file scope.

33

Storage Classes

• Block Scope

– Identifier declared inside a block

– Block scope begins at definition, ends at right
brackets.

– Used for variables, local variables of function.

– Outer blocks hidden from inner blocks if there is a
variable with the same name in the inner block.

34

Storage Classes

35

Storage Classes

36

Storage Classes

37

Storage Classes

38

QUIZ

39

Klavyeden Integer tipinde tek boyutlu bir dizi

alan ve dizide kaç tane çift sayı olduğunu

döndüren fonksiyonu ve ana programı yazın.

Write the function and the main program that

takes an Integer type one-dimensional array

from the keyboard and returns the number of

even numbers in the array.

40

References

►Doç. Dr. Fahri Vatansever, “Algoritma Geliştirme ve
Programlamaya Giriş”, Seçkin Yayıncılık, 12. Baskı,
2015.

►J. G. Brookshear, “Computer Science: An Overview
10th Ed.”, Addison Wisley, 2009.

►Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”, Pusula
Yayıncılık, 2002.

►Paul J. Deitel, “C How to Program”, Harvey Deitel.

►Bayram AKGÜL, C Programlama Ders notları

	Slayt 1: CPE101 Programming Languages I
	Slayt 2
	Slayt 3: Benefits of Functions
	Slayt 4: Functions
	Slayt 5: Functions
	Slayt 6: Defining Functions
	Slayt 7: Defining Functions
	Slayt 8: Defining Functions
	Slayt 9: Defining Functions
	Slayt 10: Function Prototype
	Slayt 11: Function Prototype
	Slayt 12: Defining Functions
	Slayt 13: Defining Functions
	Slayt 14: Header Files
	Slayt 15: Header Files
	Slayt 16: Mathematic Library Functions
	Slayt 17: Mathematic Library Functions
	Slayt 18: Mathematic Library Functions
	Slayt 19: Example: Square function
	Slayt 20: Example: Arithmetic functions
	Slayt 21: Example: Exponent function
	Slayt 22: Passing Arrays to Functions
	Slayt 23: Passing Arrays to Functions
	Slayt 24: Passing Arrays to Functions
	Slayt 25: Passing Arrays to Functions
	Slayt 26: Passing Arrays to Functions
	Slayt 27: Passing Arrays to Functions
	Slayt 28: Passing Multiple Dimensional Arrays to Functions
	Slayt 29: Passing Multiple Dimensional Arrays to Functions
	Slayt 30: Passing Multiple Dimensional Arrays to Functions
	Slayt 31: Storage Classes
	Slayt 32: Storage Classes
	Slayt 33: Storage Classes
	Slayt 34: Storage Classes
	Slayt 35: Storage Classes
	Slayt 36: Storage Classes
	Slayt 37: Storage Classes
	Slayt 38: Storage Classes
	Slayt 39: QUIZ
	Slayt 40

