
1

Assist. Prof. Dr. Caner Özcan

Week 5
Pointers

CME 112- Programming Languages II

People never make mistakes are people who do nothing. And the biggest mistake in life is to
think yourself perfect. ~Y. Emre

2

► Normally a value of parameter sent to a function does
not change. And modifications in function does not effect
original variable.

► The case in which the original variable is not changed but
its copy is sent to a function is called "call by value" or "pass
by value".

► Sometimes we need to return more than one value from
a function or we need the original variable changed by the
function.

Call by Value and Call by Reference

2

3

► For this purposes we use "call by reference" or "pass by
reference

► In call by reference, arguments are not passed with their
values, but with their addresses. Thus, all modifications on
arguments effect the original variable.

Call by Value and Call by Reference)

3

4Call by Value

4

5Call by Reference

5

6

► If your function has to return more than one value, pass
by reference usage is necessary.

► Because return keyword can only return one value from
function.

► For example, we want to write a division function that
gives division result and remainder.

► In this case, divided number and divisor is sent to
function and remainder and division should be returned
back from function.

► As return keyword can only return one value, second
value must be returned by reference method.

Call by Reference

6

7Call by Reference

7

8

► When a program executes, the operating system reserves
space to run program (stack and heap).

► The stack is memory space where functions and their
locally defined variables reside.

► The heap is reserved for program and it is an empty
section to use for allocating memory at runtime.

Dynamic Memory Allocation

8

9

► Stack and heap are the logical parts of memory.

► Stack works in LIFO (Last in First Out) principal. If
considered as a box: one of the books that you put in the
box is placed on top of the other. Latest added book is
accessed first.

► Heap is like a farm of programmer and usage of it is in
responsibility of programmer.

Stack and Heap

9

10

► While we store value type variables, pointer variables and
code addresses in the stack.

► Stack is faster than heap. Because working principal of
stack is easy and spaces that we want to reach are placed
one after the other.

Stack and Heap

10

11

► Memory spaces that is shown by pointers are stored in
the heap space.

► Heap is slower than stack. Because to reach an object in
the heap we should perform a complex search as we put an
object into any empty space in heap.

Stack and Heap

11

12

► We may need an array whose number of elements may
vary according to needs.

► For such kind of need, creating a large array to solve the
problem may consume memory in vain.

► More effective solution is usage of dynamic memory
allocation.

Dynamic Memory Allocation

12

13

► In dynamic memory allocation, amount of memory
needed is determined during the execution of program.

► malloc, calloc, or realloc are the three functions used to
manipulate memory.

► These commonly used functions are available through the
stdlib library, so you must include this library in order to use
them.

#include<stdlib.h>

Dynamic Memory Allocation

13

14

► Malloc function is used to allocate a block of memory for
one variable.

► If there is not enough memory available, malloc will
return NULL.

int *ptr;
ptr = (int *) malloc(n*sizeof(int));

Malloc() Function

14

15

► Calloc function is also used to allocate a block of memory.

► If there is not enough memory available, calloc will return
NULL.

► Unlike malloc function, it takes two arguments.

char *ptr;
ptr = (char *)calloc(10, sizeof(char));

Calloc() Function

15

16

► Realloc is used to resize an allocated memory space.

► A pointer that will point the starting address of resized
memory space and new size are passed to realloc function
as parameter.

void *realloc(void *ptr, size_t size);

Realloc() Function

16

17

► In high level programming languages such as (C#, Java)
removing unused objects from memory is achieved
automatically by Garbage Collector.

► Unfortunately, there is no garbage collector for C
language and bad and good programmer is separated easily
with this issue.

Free() Function

17

18

► How important an effective memory management is may
be understood when we write large programs.

► We should avoid consuming unnecessary memory.

► Every call to an malloc or calloc function you must have a
corresponding call to free.

int *ptr;
ptr = (int *) malloc(n*sizeof(int));
free(ptr);

Free() Function

18

19Example 1

19

20Example 2

20

21Example 2

21

22Next Week

22

►Examples with Pointers

23References

23

►Doç. Dr. Fahri Vatansever, “Algoritma Geliştirme ve

Programlamaya Giriş”, Seçkin Yayıncılık, 12. Baskı, 2015.

►Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”, Pusula

Yayıncılık, 2002.

►Paul J. Deitel, “C How to Program”, Harvey Deitel.

►“A book on C”, All Kelley, İra Pohl

24

CANER ÖZCAN
canerozcan@karabuk.edu.trThanks for listening

A n y

Q u e s t i o n s

?

25

Foot note..

