o o o | ? ¢ Lo_ S o‘

LBy P I e

CME 112- P‘rogramming Languages i

Week 5
Pointers

Assist. Prof. Dr. Caner Ozcan

er make mistakes are people who do nothing. A st mistake in life is to
elf perfect. ~Y. Emre

' Call by Value and Call by Reference

» Normally a value of parameter sent to a function does
not change. And modifications in function does not effect

original variable.

» The case in which the original variable is not changed but
its copy is sent to a function is called "call by value" or "pass

by value".

» Sometimes we need to return more than one value from
a function or we need the original variable changed by the

function.

R M

'Call by Value and Call by Reference) B

» For this purposes we use "call by reference" or "pass by
reference

» In call by reference, arguments are not passed with their
values, but with their addresses. Thus, all modifications on
arguments effect the original variable.

R M

1 Call by Value

WG =l h N Wk =

P e
Bl R o

15
16
17
18

#include <stdio.h>
volid arttir(int);

i

¥

Fint mainld(void)

int 1;

i =5;

printf("oncesi %d\n", 1i);
arttir(i);

printf("sonrasi %d\n", 1);
getchar();

return 8;

Flwvolid arttir(int k)

1
¥

|¢.‘.++_;

Call by Reference
1. #include <stdio.h>
2. woid increment(int *);
2 Eint main(void)
48 [{
5 int 1;
6 i = 5;
7 printf("oncesi %d\n", 1);
3 increment(&i);
= printf("sonrasi %d\n", 1);
10 getchar();
11
12 return @;
13§ |}
14
15 Ewvoid increment(int *k)
168 | {
17 (*k)++;
18] | }

' Call by Reference

» If your function has to return more than one value, pass
by reference usage is necessary.

» Because return keyword can only return one value from
function.

» For example, we want to write a division function that
gives division result and remainder.

» In this case, divided number and divisor is sent to
function and remainder and division should be returned
back from function.

» As return keyword can only return one value, second
value must be returned by reference method.

Call by Reference

LUST i« TN [T R O W I S

[=y =y =
L Iy A R 4

15
16
17
18

#include<stdio.h>

int
Eint

1

bolme _islemi(int, int, int * };
main{ void)

int bolunen, bolen;

int bolum, kalan;

bolunen = 13;

bolen = 4;

bolum = bolme islemi(bolunen, bolen, &kalan };
printf{ "Bolum: %d Kalan: %d\n", bolum, kalan);
getchar();

return 8;

bolme islemi(int bolunen, int bolen, int *kalan)

*kalan = bolunen % bolen;

return bolunen / bolen;

' Dynamic Memory Allocation

» When a program executes, the operating system reserves
space to run program (stack and heap).

» The stack is memory space where functions and their
locally defined variables reside.

» The heap is reserved for program and it is an empty
section to use for allocating memory at runtime.

R M

'Stack and Heap

» Stack and heap are the logical parts of memory.

» Stack works in LIFO (Last in First Out) principal. If
considered as a box: one of the books that you put in the
box is placed on top of the other. Latest added book is
accessed first.

» Heap is like a farm of programmer and usage of it is in
responsibility of programmer.

STACK

1 1L
O 0
O 00

- T

'Stack and Heap

» While we store value type variables, pointer variables and
code addresses in the stack.

» Stack is faster than heap. Because working principal of
stack is easy and spaces that we want to reach are placed

one after the other.

numara=600

Stack and Heap

» Memory spaces that is shown by pointers are stored in
the heap space.

» Heap is slower than stack. Because to reach an object in
the heap we should perform a complex search as we put an
object into any empty space in heap.

isim="Ali"

' Dynamic Memory Allocation

» We may need an array whose number of elements may
vary according to needs.

» For such kind of need, creating a large array to solve the
problem may consume memory in vain.

» More effective solution is usage of dynamic memory
allocation.

R M

' Dynamic Memory Allocation

» In dynamic memory allocation, amount of memory
needed is determined during the execution of program.

» malloc, calloc, or realloc are the three functions used to
manipulate memory.

» These commonly used functions are available through the
stdlib library, so you must include this library in order to use

them.
#include<stdlib.h>

R M

'Malloc() Function

» Malloc function is used to allocate a block of memory for
one variable.

» If there is not enough memory available, malloc will
return NULL.

int *ptr;

ptr = (int *) malloc(n*sizeof(int));

R M

Calloc() Function

» Calloc function is also used to allocate a block of memory.

» If there is not enough memory available, calloc will return
NULL.

» Unlike malloc function, it takes two arguments.

char *ptr;
ptr = (char *)calloc(10, sizeof(char));

R M

' Realloc() Function

» Realloc is used to resize an allocated memory space.

» A pointer that will point the starting address of resized
memory space and new size are passed to realloc function

as parameter.
void *realloc(void *ptr, size_t size);

R M

' Free() Function

» In high level programming languages such as (C#, Java)
removing unused objects from memory is achieved
automatically by Garbage Collector.

» Unfortunately, there is no garbage collector for C
language and bad and good programmer is separated easily

with this issue.

R M

' Free() Function

» How important an effective memory management is may
be understood when we write large programs.

» We should avoid consuming unnecessary memory.

» Every call to an malloc or calloc function you must have a
corresponding call to free.

int *ptr;

ptr = (int *) malloc(n*sizeof(int));

free(ptr);

R M

®

Example 1
1 =#include <stdio.h>»
2] | #include <stdlib.h>
3|=int main(void)
al [{
5 int n,1i,*ptr,sum=0;
El printf({"Eleman sayisini girinn™);
71 scanf("%d",&n);
8|
El ptr= (int *)malloc({n¥*sizeof{int)};
10| if({ptr==NULL)

11 {

lil printf{"Yeterli hafiza yok");
13§ 1

14 printf{"Dizi elemanlarini girinn™);
15| for(i=@:;i<n;i++)

16| {

1?' scanf("%d" ,ptr+i);

lEI sum += *(ptr+i);

19§ i

EE| printf{"Toplam = %d",sum};

21' getchar();

EEI getchar();

23 return 8;

Example 2

1i=#include <stdio.h>

2| #include<stdlib.h>

31 int *dizileri_birlestir(int [], int, int [], int);
41=int main(void)

s||¢

6 int 1;

7 int liste 1[5] = { 6, 7, 8, 9, 18 };

3 int liste 2[7] = {13, 7, 12, 9, 7, 1, 14 };

9 // sonucun dondurulmesi icin pointer tanimliyoruz
18 int *ptr;

11

12 ptr = dizileri birlestir(liste 1, 5, liste 2, 7);
13

14 f/ ptr isimli pointer'i bir dizi olarak dusunebiliriz
15 for({ 1 =8; 1 < 12; i++)

16 printf{"%d ", ptr[i]);

17| printf("\n");

18

10 return 8;

pal | }

Example 2
21 int *dizileri birlestir(int dizi 1[], int boyut_ 1,

22)= int dizi 2[], int boyut 2)

231 {

24 int *sonuc = (int *)calloc(boyut_ l1+boyut 2, sizeof(int));
25 int 1, k;

EEI f/ Birinci dizinin degerleri ataniyor.

27| for(i = 0; i < boyut 1; i++)

28| sonuc[i] = dizi 1[i];

29|

EEI [/ Ikinci dizinin degerleri ataniyor.

31 for(k = 8; k < boyut 2; i++, k++) {

32 sonuc[i] = dizi 2[k];

33 }

34

35 [/ Geriye sonuc dizisi gonderiliyor.

36 return sonuc;

37|}

'Next Week

» Examples with Pointers

References

» Doc. Dr. Fahri Vatansever, “Algoritma Gelistirme ve

Programlamaya Giris”, Seckin Yayincilik, 12. Baski, 2015.

» Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basim”, Pusula

Yayincilik, 2002.
» Paul J. Deitel, “C How to Program”, Harvey Deitel.

» “A book on C”, All Kelley, Ira Pohl

R M

© ?

. . . CANER OZCAN
Th a n kS fO r I ISte n I ng i = canerozcan@karabuk.edu.tr

Foot note..

The first step is to
establish that
something is possible;
then probability

will occur.

