
1

Assist. Prof. Dr. Caner Özcan

Week 1
Introduction, Scope Rules and
Generating Random Numbers

CME 112- Programming Languages II

You have two options at any given moment. You can either: Step forward into growth or Step
back into safety. ~A.Maslow

2

Course Web Site: www.canerozcan.net

Office Hours: Wednesday 14:00-15:30

Thursday 13:00-15:30

or appointment by email: canerozcan@karabuk.edu.tr

Textbooks:
“Algoritma Geliştirme ve Programlamaya Giriş”, Doç. Dr. Fahri Vatansever.

“C how to Program ”, Paul J. Deitel, Harvey Deitel.

“A book on C”, All Kelley, Ira Pohl

“A’dan Z’ye C Klavuzu’’, Kaan Aslan.

2

Introduction

3

►Work hard and practice!

►Grading
▪ Midterm Exam + Homework + Lab. Exam: %40
▪ Final Exam + Homework + Lab. Exam: : %60

►Study to learn, not for grade. Grade is
achieved anyway.

Introduction

3

4

► Recursive Functions

► Pointers (Call by Value, Call by Reference,
Dynamic Memory Allocation)

► Struct, Enum and Typedef Definitions

► Singly Linear Linked Lists

► Sort and Search Algorithms

► String and Mathematical Functions

► Sequential and Random Access Files

► Bitwise Operators

► Basic Graphics Operations

Topics During the Semester

4

5

►Practice is habit.

►Practice is routine.

►It is obtained by practicing.

►Practice requires great devotion and dedication.

►Some skills acquired by practicing.

▪ Shooting
▪ Driving a car
▪ Writing

How to Become a Good Programmer?

5

6

►If you want to be a novelist, can you start writing
novels without reading the best written novels?

►If you want to be a film screenwriter, can you
make the best film without reading the best movie
scripts?

►If you want to be a software engineer, how can
you be a software engineer without reading
program codes?

►If you read the written code, you can use the
techniques you like. If you see the wrong situation,
you may not do the wrong.

Read Written Program Codes

6

7

►Software codes have many features.

►Indents, description lines, naming, function
structures, etc.

►Review the code written by experienced
software engineers. In a short time you can start
writing better than the codes you wrote yourself.

Read Written Program Codes

7

8

►Complete the documentation before you start
writing code.

►Design must be done.

►Specifications, design documents, constraints
and assumptions, algorithms, flow diagrams.

►You must prepare for tomorrow with what you
have learned today.

Before You Start Writing Code

8

9

►Follow established standards and do not create
yourself.

▪ File naming conventions

▪ Function and module naming convention

▪ Variable naming conventions

▪ Date, indentation, reviews

▪ Readability guidelines

▪ List of things to do and don'ts.

Follow Specified Standards

9

10

►Codes should be written for review.

▪ Poor coding and non-compliance

▪ Performance not considered

▪ Date, indentation, explanations not suitable

▪ Poor readability

▪ Open files are not closed

▪ Allocated memory is not freed

▪ Too many global variables and too much coding

▪ Poor exception handling

▪ No modularity and repeated code.

Review Codes

10

11Program Development Environments

11

12

►Download Dev-C++ from http://www.bloodshed.net/dev/devcpp.html

and install it. https://en.wikiversity.org/wiki/Installing_and_using_Dev-
C%2B%2B

► Download the Code::Blocks 17.12 installer. If you know you don't have

MinGW installed, download the package which has MinGW bundled.

► Download eclipse Neon from http://www.eclipse.org/downloads/ Choose

Eclipse IDE for C/C++ Developers and install. You should download and install

MinGW GCC http://www.mingw.org/

► https://visualstudio.microsoft.com/tr/vs/features/cplusplus/

Program Development Environments

12

http://www.bloodshed.net/dev/devcpp.html
https://en.wikiversity.org/wiki/Installing_and_using_Dev-C%2B%2B
http://codeblocks.org/downloads/26
http://www.eclipse.org/downloads/
http://www.mingw.org/
https://visualstudio.microsoft.com/tr/vs/features/cplusplus/

13

►Functions break large computing tasks into smaller
ones.

►Taking a problem and breaking into small,
manageable pieces is critical to writing large
programs.

►Functions return values to where is invoked.

type function_name(parameter list)
{declerations statements}

► The parameter list is a comma-seperated list of
declarations.

C Programming and Functions

13

14Functions

14

15Functions

15

16Function Return Statement

16

► return; // return ++a; // return (a*b)

When a return statement is encountered, execution of the
function is terminated and control is passed back to calling
environment.
If the return statement contains an expression, then the
value of the expressions is passed to the calling environment
as well.

17

Functions

17

18

Functions

18

19

Functions

19

20

► Scope: Program range for recognizing an object

► The object scope relates to the place where it is defined in the program.

1-Block Scope

Recognition in only one block
2-Function Scope

Recognition of only one function
3-File Scope

Recognition within the entire file.

► Variables are examined in 3 sections according to the scope:

Local variables
Global variables
Parameter variables

Note: The fact that the two variables belong to the same group of
fields (block, function, or file) does not necessarily mean that the
fields of activity are exactly the same.

Object Scope Area

20

21

► Local variables follow the block scope rule. They are valid only in the
block where they are defined.

Local Variables

21

…..

{

int a;

{

int b;

}

}

….

Scope of b

Scope of a

22

► Variables with the same name can be defined with different scope.

► The compiler maintains these variables at different addresses.

► The variables with the same name defined in the inner blocks mask the
variables with the same name defined in the outer block.

► Two variables with the same name cannot be defined in the same block.

Local Variables

22

23

► These are the variables defined outside all blocks.

► Global variables follow the file scope.

► The global variable can be initialized.

► Only the local variable can be accessed in the block where the global and local
variable with the same name is recognizable.

Global Variables

23

24

► These are function parameters.

► Adheres to the function scope.

► Only the parameter is valid in the function they are.

Parameter Variables

24

25

► Object Lifecycle: Defines the time interval in which objects operate

► Objects are divided into two parts as static and dynamic life.

► Static life object: They operate until the end of the program.

► They are stored in the data segment region.

▪ 1-Global variables 2- Strings 3-Static local variables

► Dynamic life object:

▪ They operate in a certain part of the program within a certain time period
and disappear.

▪ 1-Local variables 2- Parameter variables 3-Objects created with dynamic
memory functions

▪ Local variables and parameter variables are stored in the Stack segment
region.

Object Lifecycle

25

26

► For example, local variables are defined when the block is run, and they
disappear when the block ends.

► The working time is up to the duration of the block.

► The value of the static-life variable is 0, although it is not initialized.

► If the dynamic-life variables are not assigned the first value, then the current
value is assigned to the variable in the memory.

► For example, if the global variable is not initialized, the value is 0. The value
cannot be estimated if the local variable is not initialized.

Object Lifecycle

26

27

► For example, local variables are defined when the block they are defined is run,
and they disappear when the block ends.

► In C, the secondary properties of objects are identified by determinants.

► Determinants: 1- Locator 2-Species

► Specifiers: 1- Storage classes specifier 2-Type specifier

► 4 storage classes specifiers

1-auto 2-register 3-static 4-extern

► 2 type specifiers

1-const 2-volatile
► General variable definition format:

[storage classes specifiers] [type specifier] [type] object;
It can be in any order.
auto const int a = 10; (recommended)
const auto int a = 10;
int const auto a=10;

Storage Classes and Type Specifiers

27

28

► Every variable and function in C has two attributes. Type
and storage class.

► Four storage classes are automatics, external, register, and
static with corresponding.

► The object is created and destroyed in its own block.

▪ auto: Variables declared within function are automatic by
default. These variables can be used in scope of the
function. auto double x, y;

They’re stored in the Stack.

Global variables and parameter variables cannot take
auto property.

Storage Classes

28

29

▪ extern: One methods of transmitting information across
blocks and functions is to use external variables.

When a variable is declared outside a function, storage is
permanently assigned to it, and its storage class is extern.

The C compiler automatically accepts the function
defined in another module as extern. Extern use for
functions is unnecessary.

If the variable defined by extern is not given the initial
value, the compiler does not allocate space in memory.

Storage Classes

29

30

#include <stdio.h>
extern int a = 1, b = 2;
c = 3;
int f(void);
int main(void) {

printf("%3d\n", f());
printf("%3d%3d%3d\n", a, b, c);

return 0;
}
int f(void) {

auto int b, c;
a = b = c = 4;
return (a + b + c);

}

Examples: auto & extern

30

31

► This use of extern is used to tell the compiler to ‘’look for it
elsewhere’’ either in this file or in some other file.

Examples: auto & extern

31

example1.c

#include <stdio.h>

int a = 1, b = 2;
c = 3;
int f(void);
int main(void) {

printf("%3d\n", f());
printf("%3d%3d%3d\n", a, b, c);

return 0;
}

file2.c

int f(void) {

extern a;

int b, c;

b = c = a;

return (a + b + c);

}

32

▪ register: Storage class register tells the compiler that the
association variables should be stored in high-speed
memory registers.

► Specifies that the variable is kept in the registers of the CPU, not in
memory.

► Keeping variables in the register allows the program to accelerate.

C code Assembly
data3 = data1+data2 MOV reg, data1

ADD reg, data2
MOV data3, reg

► Access to memory is slower than access to registers. Because a certain
machine time is required to access the memories.

► Registers are limited.

Storage Classes

32

33

▪ static: Local variables defined in functions.

After the function ends, the variable value is stored.

Only valid in the function they are defined.

Static declarations have two important and distinct uses.
One of them is to allow a local variable to retain its
previous value when the block is reentered.

The second and more subtle use of static is in connection
with external declarations. It is use to restriction of the
scope of the variable.

Static local and global variables are kept in the data
segment region.

Storage Classes

33

34Example: register

34

#include <stdio.h>
#include <time.h>
int a =1;
#define N 10000
int main(void) {

clock_t start, end;
double cpu_time_used;
register double i;
start = clock();
for(i=0;i<N;i=i+0.0001);
end = clock();
cpu_time_used = ((double) (end - start)) /
CLOCKS_PER_SEC;
printf("Running time is %f",cpu_time_used);

return 0;
}

 Running
time is 0,163
second with
register
variable.

 Running
time is 0,419
second
without
register
variable.

35Example: static

35

36Example: static

36

37Example: static

37

38Example

38

39Example

39

40Example

40

41Example

41

42

rand function

▪ <stdlib.h> library is needed

▪ Returns a “random” number between 0 and RAND_MAX (
at least 32767- max value for 16 bit integer)

▪ RAND_MAX is a symbolic constant defined in <stdlib.h>.

▪ Every number between 0 and RAND_MAX has equal
probability of being chosen.

▪ The range of values produced by rand varies by what is
needed in application

Random Number Generator

42

43

►Program simulating coin tossing might require only 1 for
tails or 0 for heads.

►A dice rolling program that simulates six-sided die would
requires random integers from 1 to 6.

► Scaling:

▪ Values generated by rand is always between 0 and
RAND_MAX

0 ≤ rand () ≤ RAND_MAX

▪ Use remainder % operator with rand function for example
to produce numbers between 0 and 5. It is called scaling

rand() % 6

Random Number Generator

43

44

► The number 6 is called scaling factor.

► To shift the range just add 1 to the produced result.

▪ randNumber = 1 + rand () % 6 produces numbers

1 ≤ randNumber ≤ 6

►General rule:

▪ n = a + rand () % b ;

a is shifting value (First number in desired range of
consecutive integers)

b is scaling factor (Equal to the width of desired
range of consecutive integers)

Random Number Generator

44

45Random Number Generator

45

46Random Number Generator

46

► Sample Program: Simulating 6000 rolls of a die

► Each integer from 1 to 6 should appear approximately with
equal likelihood (1000 times)

47Random Number Generator

47

48Random Number Generator

48

49Random Number Generator

49

► Function rand actually generates pseudorandom numbers

►Calling rand repeatedly produces a sequence of numbers
that appears to be random

►However, sequence repeats itself on each program
execution

► To produce different sequence of integers on each program
execution we use srand function

► srand takes an unsigned integer as an argument

► srand seeds function rand to produce different sequence of
numbers on each execution of the program

50Random Number Generator

50

51Random Number Generator

51

52Random Number Generator

52

► To generate a random number each time without entering a
seed value

srand (time (NULL));

▪ Reads system clock to obtain the value for seed
automatically

▪ Function time return the number of seconds that have
passed since midnight on January 1970

▪ The <time.h> library is used for the time function.

53A Game of Chance: Craps

53

Rules:

▪ Roll two dice

▪ Sum of the spots on two upward faces is calculated

▪ 7 or 11 on first throw player wins

▪ 2, 3 or 12 on first throw player loses

▪ 4,5,6,8,9,10 becomes players point

▪ Player must roll his point before rolling 7 to win

54

#CrapsGAME

Homework
☺

55Next Week

55

►Memory Layout of C Programs

►Recursive Functions

56References

56

►Doç. Dr. Fahri Vatansever, “Algoritma Geliştirme ve

Programlamaya Giriş”, Seçkin Yayıncılık, 12. Baskı, 2015.

►Kaan Aslan, “A’dan Z’ye C Klavuzu 8. Basım”, Pusula

Yayıncılık, 2002.

►Paul J. Deitel, “C How to Program”, Harvey Deitel.

►“A book on C”, All Kelley, İra Pohl

57

CANER ÖZCAN
canerozcan@karabuk.edu.trThanks for listening

A n y

Q u e s t i o n s

?

58

Hayal gücü bilgiden daha önemlidir.
Çünkü bilgi sınırlıyken, hayal gücü tüm
dünyayı kapsar, ilerlemeyi teşvik eder,

evrimi doğurur. Açıkçası, bilimsel
araştırmada gerçek bir faktördür.

